Triangular Networks for Resilient Formations
نویسندگان
چکیده
Consensus algorithms allow multiple robots to achieve agreement on estimates of variables in a distributed manner, hereby coordinating the robots as a team, and enabling applications such as formation control and cooperative area coverage. These algorithms achieve agreement by relying only on local, nearest-neighbor communication. The problem with distributed consensus, however, is that a single malicious or faulty robot can control and manipulate the whole network. The objective of this paper is to propose a formation topology that is resilient to one malicious node, and that satisfies two important properties for distributed systems: (i) it can be constructed incrementally by adding one node at a time in such a way that the conditions for attachment can be computed locally, and (ii) its robustness can be verified through a distributed method by using only neighborhood-based information. Our topology is characterized by triangular robust graphs, consists of a modular structure, is fully scalable, and is well suited for applications of large-scale networks. We describe how our proposed topology can be used to deploy networks of robots. Results show how triangular robust networks guarantee asymptotic consensus in the face of a malicious agent.
منابع مشابه
Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملResilient Supplier Selection in a Supply Chain by a New Interval-Valued Fuzzy Group Decision Model Based on Possibilistic Statistical Concepts
Supplier selection is one the main concern in the context of supply chain networks by considering their global and competitive features. Resilient supplier selection as generally new idea has not been addressed properly in the literature under uncertain conditions. Therefore, in this paper, a new multi-criteria group decision-making (MCGDM) model is introduced with interval-valued fuzzy sets (I...
متن کاملThe Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کاملGeneralized Controller for Directed Triangle Formations
This paper proposes and analyzes a distributed control law which generalizes three different previously considered control laws for maintaining a triangular formation in the plane consisting of three point-modelled, mobile autonomous agents. It is shown that the control law under consideration can cause any initially non-collinear, positively-oriented {resp. negatively-oriented} triangular form...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کامل